如何分析python程序的性能

目录:

获取程序运行的大概时间
获取更精确的程序运行时间
计算每一行代码的运行时间和运行频率
找到程序运行时占用多少内存
line_profiler 和memory_profiler在IPython中的简便实用方法
找到内存泄露的地方
获取使用最多的前20个对象
获取增加和删除的对象
那些对象被引用

—————————————————————————————————-

程序性能分析需要基本上需要搞清楚4个问题

  1. 程序到底有多快
  2. 程序的瓶颈到底在哪里
  3. 程序占用内存多少
  4. 是否存在内存泄露

下面我们使用一些工具来回答以上四个问题。

获取程序运行的大概时间

在linux平台上,可以使用time命令得到程序运行的大概时间:

$ time python yourprogram.py

real 0m1.028s
user 0m0.001s
sys 0m0.003s

简短的来说,其输出的结果说明:

  • real - 程序实际运行的时间
  • user - 用户空间话费的cpu时间
  • sys - 内核空间话费的cpu时间

如果sysuser之和的时间远远小于real的时间,那么说明程序大部分的时间很可能花费在IO等待。

获取更精确的程序运行时间

下面我们通过封装一个Timer类来实现获取更精确地程序运行时间

import time

class Timer(object):
def __init__(self, verbose=False):
self.verbose = verbose

def __enter__(self):
self.start = time.time()
return self

def __exit__(self, *args):
self.end = time.time()
self.secs = self.end - self.start
self.msecs = self.secs * 1000 # millisecs
if self.verbose:
print 'elapsed time: %f ms' % self.msecs

为了使用我们封装的类,必须使用with来封装我们需要计算的代码块,这样当代码块开始时,计时器开始,当代码块结束时计时器停止。

from timer import Timer
from redis import Redis
rdb = Redis()

with Timer() as t:
rdb.lpush("foo", "bar")
print "=> elasped lpush: %s s" % t.secs

with Timer as t:
rdb.lpop("foo")
print "=> elasped lpop: %s s" % t.secs

 

可以将时间输出到文件中,已查看程序的时常运行时间。

计算每一行代码的运行时间和运行频率

这里我们需要使用line_profiler模块,首先安装该模块:

pip install line_profiler

为了使用该模块,需要将@profile添加到你需要观察的函数头部。

primes.py

@profile
def primes(n): 
if n==2:
return [2]
elif n<2:
return []
s=range(3,n+1,2)
mroot = n ** 0.5
half=(n+1)/2-1
i=0
m=3
while m <= mroot:
if s[i]:
j=(m*m-3)/2
s[j]=0
while j<half:
s[j]=0
j+=m
i=i+1
m=2*i+3
return [2]+[x for x in s if x]
primes(100)

使用kernprof.py运行python脚本:

$ kernprof.py -l -v fib.py

-l参数是告诉kernprof.py测试头部有@profile的函数,-v参数是告诉kernprof.py当脚本运行完毕时打印出时间信息。以下是告诉kernprof.py的输出信息样本:

Wrote profile results to primes.py.lprof
Timer unit: 1e-06 s

File: primes.py
Function: primes at line 2
Total time: 0.00019 s

Line # Hits Time Per Hit % Time Line Contents
==============================================================
2 @profile
3 def primes(n): 
4 1 2 2.0 1.1 if n==2:
5 return [2]
6 1 1 1.0 0.5 elif n<2:
7 return []
8 1 4 4.0 2.1 s=range(3,n+1,2)
9 1 10 10.0 5.3 mroot = n ** 0.5
10 1 2 2.0 1.1 half=(n+1)/2-1
11 1 1 1.0 0.5 i=0
12 1 1 1.0 0.5 m=3
13 5 7 1.4 3.7 while m <= mroot:
14 4 4 1.0 2.1 if s[i]:
15 3 4 1.3 2.1 j=(m*m-3)/2
16 3 4 1.3 2.1 s[j]=0
17 31 31 1.0 16.3 while j<half:
18 28 28 1.0 14.7 s[j]=0
19 28 29 1.0 15.3 j+=m
20 4 4 1.0 2.1 i=i+1
21 4 4 1.0 2.1 m=2*i+3
22 50 54 1.1 28.4 return [2]+[x for x in s if x

 

根据上面的输出,找到运行最多的代码行或者运行时间最长的代码来优化,定会提升程序的性能。

找到程序运行时占用多少内存

现在我们已经知道如何测试程序的运行时间,接下来看看如何得知程序占用的内存,我们需要安装使用到的模块memory_profiler:

$ pip install -U memory_profiler
$ pip install psutil

(安装psutil会很大程度上提高memory_profiler的性能。)

和前面说过的一样,为了得到函数占用的内存,需要在函数头部添加@profile,如下:

@profile
def primes(n): 
...
...

用下面的命令运行你的脚本:

$ python -m memory_profiler primes.py

你会得到像下面这样的输出:

Filename: primes.py

Line # Mem usage Increment Line Contents
==============================================
2 @profile
3 7.9219 MB 0.0000 MB def primes(n): 
4 7.9219 MB 0.0000 MB if n==2:
5 return [2]
6 7.9219 MB 0.0000 MB elif n<2:
7 return []
8 7.9219 MB 0.0000 MB s=range(3,n+1,2)
9 7.9258 MB 0.0039 MB mroot = n ** 0.5
10 7.9258 MB 0.0000 MB half=(n+1)/2-1
11 7.9258 MB 0.0000 MB i=0
12 7.9258 MB 0.0000 MB m=3
13 7.9297 MB 0.0039 MB while m <= mroot:
14 7.9297 MB 0.0000 MB if s[i]:
15 7.9297 MB 0.0000 MB j=(m*m-3)/2
16 7.9258 MB -0.0039 MB s[j]=0
17 7.9297 MB 0.0039 MB while j<half:
18 7.9297 MB 0.0000 MB s[j]=0
19 7.9297 MB 0.0000 MB j+=m
20 7.9297 MB 0.0000 MB i=i+1
21 7.9297 MB 0.0000 MB m=2*i+3
22 7.9297 MB 0.0000 MB return [2]+[x for x in s if x]

 

line_profiler 和memory_profilerIPython中的简便实用方法

IPython中,只要你执行以下两个命令,皆可以直接实用line_profiler 和memory_profiler了:

%load_ext memory_profiler
%load_ext line_profiler

执行这两个命令以后,就可以通过执行%lprun 和%mprun命令来测试你需要测试的函数,而不需要在每个函数前面添加@profile标记,如下:

In [1]: from primes import primes
In [2]: %mprun -f primes primes(1000)
In [3]: %lprun -f primes primes(1000)

 

找到内存泄露的地方

cPython利用对象的引用计数来维护内存的使用,当某个对象被保存一次时,该对象的引用次数就会加1,某个对象被删除一次时,该对象的引用次数就减1,当引用次数为零时,删除该对象。

当某个对象已经不再使用了,但是他的引用还存在,那么就会出现内存泄露。

要检测内存泄露,这里我们需要用到模块objgraph ,使用下面命令安装该模块

pip install objgraph

(主要这个模块是要按照pythonxdot模块和graphviz程序)

在代码中使用一下代码打开调试模式:

import pdb; pdb.set_trace()

 

获取使用最多的前20个对象

使用下面的命令:

(pdb) import objgraph
(pdb) objgraph.show_most_common_types()

MyBigFatObject 20000
tuple 16938
function 4310
dict 2790
wrapper_descriptor 1181
builtin_function_or_method 934
weakref 764
list 634
method_descriptor 507
getset_descriptor 451
type 439

 获取增加和删除的对象

使用下面的命令:

(pdb) import objgraph
(pdb) objgraph.show_growth()
.
.
.
(pdb) objgraph.show_growth() # this only shows objects that has been added or deleted since last show_growth() call

traceback 4 +2
KeyboardInterrupt 1 +1
frame 24 +1
list 667 +1
tuple 16969 +1

 那些对象被引用

以下面的代码为例:

x = [1]
y = [x, [x], {"a":x}]
import pdb; pdb.set_trace()

执行下面的命令:

(pdb) import objgraph
(pdb) objgraph.show_backref([x], filename="/tmp/backrefs.png")

输出下面的图片:

bbb

图片最底下的红色字母表示的对象是我们做关系的,它显示了那么变量引用了这个对象。

总的说来,objgraph会告诉我们:

  • 占用内存的对象
  • 在一段时间内对象的增加和删除
  • 对象的所有引用

 

文章来自:http://my.oschina.net/sundq/blog/202633

Comment

  • Trackback are closed
  • Comments (1)
  1. 为撒子代码连个缩进都没有,让人怎么读?

Comment are closed.